
Eur. Phys. J. B 16, 81–84 (2000) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
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Abstract. The inelastic neutron scattering technique was employed to study the magnetic excitation spec-
tra in the diluted one-dimensional Heisenberg antiferromagnet CsMn1−xMgxBr3 (x = 0, 0.05, 0.10, 0.25,
0.50). The spectral response is interpreted in terms of spin-wave excitations in finite chain segments of
Mn2+ ions, which are found to exist as long as the chain length exceeds twice the wavelength of the spin
excitation. This limit determines the crossover into the mesoscopic regime.

PACS. 75.30.Ds Spin waves – 75.40.Gb Dynamic properties (dynamic susceptibility, spin waves, spin
diffusion, dynamic scaling, etc.) – 75.50.Ee Antiferromagnetics

Understanding the spectral features of correlated low-
dimensional magnetic systems in the presence of nonmag-
netic impurities has become a central issue in current stud-
ies of high-temperature superconductors [1], spin-ladder
systems [2], spin-Peierls compounds [3], etc. Theoretical
models have been developed to describe the spectral re-
sponse for the pure systems [4], giving rise to collective
spin excitations, and the same models are usually adapted
to the case of low impurity concentrations by renormaliza-
tion procedures or exact numerical diagonalization [4,5].
There are rigorous theoretical solutions only for the case
of a one-dimensional magnetic chain [4]. Upon nonmag-
netic dilution the infinite chain is separated into segments
of length ` which follow a statistical distribution function
p(`). Whenever ` is large compared to the wavelength λ
of the collective spin excitation, the spin-wave approach is
adequate. On the other hand, when ` becomes compara-
ble to λ, the system is in a mesoscopic regime and the
spin-wave approach breaks down. The applicability of
the spin-wave formalism is therefore dependent on both
the impurity concentration and the wavelength of the spin
excitation. But where does the crossover to the mesoscopic
regime occur?

This question was extensively studied for the random
one-dimensional antiferromagnet (CD3)4NMn1−xCuxCl3
(TMMC:Cu) [6–8]. These experiments yielded the em-
pirical rule qc ∼ 2κ where qc is the critical wave vec-
tor of the spin excitation and κ the inverse correlation
length, i.e., propagating spin-wave modes can only ex-
ist for wavelengths of the order or smaller than the aver-
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age length of the Mn2+ segments. These studies, however,
were restricted to low impurity concentrations (x ≤ 0.08
and x ≤ 0.15 in Refs. [6,8], respectively), so that the
crossover for short wavelength spin excitations could not
be probed. The empirical rule qc ∼ 2κ was therefore de-
rived from the observation of spin excitations with low
wave vectors q ≤ 0.07 Å−1 and consequently low ener-
gies which can hardly be resolved from the elastic line
(see Fig. 3 in Ref. [8]), so that the crossover from un-
derdamped to overdamped spin waves is often difficult
to establish. Moreover, and most surprisingly, no energy
renormalisation was found upon dilution (see Fig. 6 in
Ref. [7]). We therefore decided to address this question by
a systematic neutron spectroscopic study of the magnetic
response in the diluted one-dimensional Heisenberg anti-
ferromagnet CsMn1−xMgxBr3 over a large impurity range
0 ≤ x ≤ 0.50. We analysed the observed energy spectra
in terms of a model which allows to look at the contri-
butions of particular segment types individually. We find
that the crossover to the mesoscopic regime occurs as soon
as the length ` of the Mn chain segment becomes smaller
than typically twice the wavelength λ of the spin excita-
tion. This empirical rule holds over a wide range of wave
vectors q.

The crystal structure of CsMnBr3 is hexagonal and
consists of MnBr−3 chains along the c-direction for which
the magnetic Mn2+ ions are separated by R = 3.26 Å,
whereas the interchain distance amounts to 7.91 Å [9].
For the diluted compound CsMn1−xMgxBr3 the introduc-
tion of nonmagnetic Mg does not change the structural
parameters (CsMgBr3 is isostructural to CsMnBr3 and
has identical unit cell dimensions), thus the distance R is
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constant for any value x. For CsMnBr3 the spin
Hamiltonian at temperatures T > TN = 8.3 K is very
well-described by a nearest-neighbor Heisenberg model:

H = −2J
∑
i

Si · Si+1, (1)

which yields the spin-wave dispersion

ε(ξ) = 4S|J | · sin(πξ), (2)

where 0 ≤ ξ ≤ 0.5 is the reduced wave-vector along the
c-direction, S = 5

2 and J = (−0.89± 0.01) meV [10–12].
Cylindrical single crystals of CsMn1−xMgxBr3 (x = 0,

0.05, 0.10, 0.25, 0.50) with 7 mm diameter and 14 mm
length were grown by the Bridgman technique. The in-
elastic neutron scattering (INS) experiments were per-
formed at the reactor Saphir at the PSI Villigen with use
of a triple-axis spectrometer equipped with a doubly bent
C(002) monochromator and a horizontally bent C(002)
analyzer. The energy of the scattered neutrons was fixed
at 13.7 meV, and a pyrolitic graphite filter was used to
suppress higher-order contamination. The single crystals
were mounted in a closed-cycle helium refrigerator and
oriented so as to place the (101) plane into the scattering
plane. All measurements were carried out in the neutron
energy-loss configuration at T = 10 K for scattering vec-
tors Q = (0, 0, 1 + ξ) from ξ = 0 (zone center) to ξ = 0.5
(zone boundary).

In Figure 1 we show the dependence of the energy spec-
tra upon variation of the Mg concentration x for spin exci-
tations at the zone boundary (ξ = 0.5). For the pure com-
pound (x = 0) the spectral response is perfectly symmetric
and can be described by a Gaussian centered at an energy
of 8.9 meV according to equation (2). Its linewidth corre-
sponds to the instrumental energy resolution. For low im-
purity contents (x = 0.05 and 0.10) the spectral response
is gradually shifted to lower energies, the peak width in-
creases, and the peak shape develops an asymmetry on the
low energy side. For high impurity contents (x = 0.25 and
0.50) this trend continues, but additional inelastic lines
show up which are reminiscent of Mn2+ dimer and Mn2+

trimer excitations at energies 1.8, 3.6 and 4.3, 6.1 meV,
respectively [13].

In Figure 2 we show the dependence of the energy
spectra upon the reduced wave-vector ξ for constant Mg
concentration (x = 0.10). With decreasing ξ the spectral
response is shifted to lower energies according to the dis-
persive character of the spin excitations, and the peak
width is increasing which is predominantly an instrumen-
tal resolution effect. For ξ ≤ 0.1 the spin excitations could
no longer be separated from the elastic line, i.e., the spec-
tral response has the form of a broad band of quasielastic
scattering. Similar features as shown in Figures 1 and 2
were observed for other values of ξ and x.

The spin-wave energies for diluted one-dimensional
Heisenberg antiferromagnets were calculated by McGurn
and Thorpe using linear spin-wave theory [14]. For a seg-
ment with n spins the eigenvalues are given by

ε(ξn) = 4S|J | · sin(πξn), (3a)

Fig. 1. Energy spectra of neutrons scattered from
CsMn1−xMgxBr3 at T = 10 K and Q = (0, 0, 1.5). For x = 0
the line denotes a Gaussian fit. For x 6= 0 the lines are the
result of calculations according to equation (5) with n1 = 4
(. . . .), n1 = 5 (—), n1 = 6 (....), and n1 = 8 (- - - -). D and
T denote dimer and trimer excitations, respectively [13].

where

ξn = r/n, with r = 0, 1, ...,
1
2
n− 1 (3b)

for segments with an even number of spins and

ξn =
(
r +

1
2

)
/n, with r = 0, 1, ...,

1
2

(n− 3) (3c)

for segments with an odd number of spins.
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Fig. 2. Energy spectra of neutrons scattered from
CsMn0.9Mg0.1Br3 at T = 10 K for Q = (0, 0, 1 + ξ). The lines
are the result of calculations as explained in the text.

The dispersion relation (3a) is formally the same as for
an undiluted spin chain (Eq. (2)), but the finite length of
the segments selects certain discrete standing waves that
satisfy the boundary conditions. Obviously segments with
one and two spins have to be excluded. Based on equa-
tions (3) we calculated the wave-vector dependence of the
spin-wave energies ε(ξ) versus the length of the segments.
For small chain lengths the wave-vector ξ is not always
compatible with the discrete values ξn given by equa-
tions (3); in these cases we set ξn = ξ, i.e., the spin-
wave energy is linearly interpolated from two standing
waves (with ξ

(1)
n < ξ < ξ

(2)
n ). The results are displayed in

Fig. 3. Calculated spin-wave energies ε(ξ) versus the length
of the spin segments for different reduced wave-vectors ξ.

Figure 3, which nicely demonstrates the energy renormal-
ization due to the finite chain length.

It was experimentally verified that the nonmagnetic
Mg ions enter the chain in a completely random man-
ner [10], thus the lengths of the chain segments thereby
created follow a Poisson distribution function [5]

pn(x) = x · e−x·n. (4)

The spectral response for the complete system can then
be expressed by the weighted sum over all the segments:

S(ξ, ω, x) ∝
n2∑

n=n1

pn(x)

[(
exp

{
ε(ξn)
kBT

}
− 1
)−1

+ 1

]
× δ{~ω − ε(ξn)}, (5)

where pn(x) and ε(ξn) are defined by equations (3a) and
(4), respectively. The summation can be performed nu-
merically, from a lower limit n1 = 3 to an upper limit
n2 where convergence of the wave-vector dependent spin-
wave energies is obtained (see Fig. 3). We used n2 = 200
throughout our calculations.

We analyzed the observed energy spectra according to
equation (5) which was convoluted with the instrumental
resolution function taken from the undiluted analogue. In
equation (3a) 4S|J | = 8.9 meV was kept constant, i.e.,
no adjustable parameters were introduced (except for an
overall intensity scale factor) to describe the spectral re-
sponse versus dilution x as well as reduced wave-vector ξ.
The calculations were performed with different values for
the lower integration limit n1 in equation (5). In fact, n1

sets the limit below which the spin-wave approach is no
longer applicable.

Figure 1 shows the results for ξ = 0.5 where the
collective spin excitations have the shortest wavelength
λ = R

ξ = 2 ·R, hence the number of Mn2+ ions involved in
a single period of the spin wave is ns = λ

R +1 = 3. The en-
ergies, linewidths and line shapes of the spectral response
for low impurity concentrations (x = 0.05 and 0.10) are
found to be best described by taking the lower limit in the
summation of equation (5) to be n1 = 5 or 6. Smaller and
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larger values of n1 fail to reproduce the observed data.
This means that spin-wave excitations at the zone bound-
ary exist in segments whose length ` involves at least five
or six Mn2+ ions, which is roughly twice the wavelength
λ of the collective excitations. The situation is more in-
volved for higher impurity concentrations (x = 0.25 and
0.50) where the spin-wave-like response at around 8 meV
coexists with Mn2+ dimer and Mn2+ trimer excitations
[13], which cannot be reproduced by the spin-wave model
(Eq. (3)). Nevertheless, the collective part of the spectral
response can be reasonably described by taking n1 = 5 or
6, thereby confirming the results and conclusions obtained
for the lower impurity concentrations (x = 0.05 and 0.10).

A characteristic feature of introducing impurities into
the magnetic chain is the pronounced asymmetry of the
spectral response on the low energy side (see Fig. 1). It
is interesting to note that similar asymmetric line pro-
files were observed for TMMC:Cu (see Fig. 12 in Ref. [8])
which could be reproduced by computer simulations. The
approach by McGurn and Thorpe [14] used in the present
work, however, has the advantage that contributions from
particular segment types can be isolated. More specifically,
we can clearly assign the observed asymmetry of the peak
shape to spin-wave excitations in the smallest chain seg-
ments allowed by the empirical rule.

Figure 2 shows the wave-vector dependence of the re-
sults obtained for the impurity concentration x = 0.10
versus the reduced wave-vector ξ. The ξ-dependent wave-
length of the spin excitation is defined by λ = R

ξ , i.e., for
the decreasing series of wave-vectors ξ = 0.5, 0.4, 0.3, and
0.2 we have λ = 2 ·R, 5

2 ·R, 10
3 ·R, and 5 ·R, respectively,

and the number ns of Mn2+ ions involved in a single pe-
riod of the spin wave increases from ns = 3 to ns ≈ 4,
ns ≈ 5, and ns = 6, respectively, according to ns = λ

R + 1.
We find that the best description of the spectral response
is obtained by taking the lower limit in the summation of
equation (5) to be n1 ≈ 5 (ξ = 0.5), n1 ≈ 7 (ξ = 0.4),
n1 ≈ 9 (ξ = 0.3), and n1 ≈ 13 (ξ = 0.2). Again, there is
a remarkable correlation between the numbers ns and the
values n1 resulting from the interpretation of the experi-
mental data. More specifically, we find the empirical rule
n1 ≈ 2ns which means that spin-wave-like excitations ex-
ist in segments of Mn2+ ions whose lengths ` are at least
twice as large as the wavelength λ of the collective spin
excitation.

Finite chain segments of Mn2+ ions can be produced
not only by non-magnetic dilution, but also by renormal-
ization effects in the non-diluted compound CsMnBr3 up
to rather high temperatures T � TN = 8.3 K [11]. For
example, at T = 39 K, the spin-wave energy for CsMnBr3

at the zone boundary (ξ = 0.5) is shifted downwards
from 8.9 meV (at T = 10 K) to about 7.8 meV [15], since
the correlation length is reduced to approximately 14.3 Å
≈ 4.4 · R [16]. This corresponds roughly to the mean
length 〈`〉 = 4.7 ·R of the chain segments in the compound
CsMn0.75Mg0.25Br3 for which the non-magnetic dilution
reduces the spin-wave energy at the zone boundary by
a similar amount to about 8.0 meV (see Fig. 1). Obviously

the model used in the present work is able to account
quantitatively for the renormalization effects induced by
both non-magnetic dilution and temperature.

In conclusion, we performed INS experiments on
CsMn1−xMgxBr3 and analyzed the data according to the
model of McGurn and Thorpe [14]. If the model is prop-
erly modified and restricted with respect to the summa-
tion over the spin segments, it is remarkably successful
to predict the salient features of spin-wave excitations in
diluted one-dimensional antiferromagnets. The renormal-
ization effects upon non-magnetic dilution, i.e., the en-
ergy shift, the linewidth as well as the line shape of the
spectral response, are quantitatively reproduced without
any adjustable parameters. From our analysis an empiri-
cal criterion emerged that defines the crossover from the
applicability of the spin-wave approach to the mesoscopic
regime. In particular, spin-wave-like excitations exist in
chain segments provided that their length ` exceeds twice
the wavelength λ of the spin excitation.
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